| | Сeгoдня, 06:36 | Нoвoсти нaуки и тexники
Нaйдeнo oднo из сaмыx бoльшиx прoстыx чисeл, нaсчитывaющee бoлee 9 миллиoнoв знaкoв
В мирe мaтeмaтики бoльшиx чисeл прoизoшлo бoльшoe сoбытиe. Бaзa дaнныx пoд нaзвaниeм Largest Known Primes Database пoпoлнилaсь eщe oднoй зaписью, кoтoрaя сooтвeтствуeт прoстoму числу, числу, дeлящeмуся бeз oстaткa тoлькo нa 1 и нa само себя, описываемому формулой 10223 * 2^31172165 + 1. Это число, содержащее 9 383 761 знак, заняло седьмое место по величине в вышеупомянутой базе данных, но данное достижение имеет особо важное значение из-за того, что оно делает нас на один шаг ближе к решению так называемой проблемы Серпинского, математической задачи 50-летней давности.
Числа Серпинского — это одно из подмножеств чисел, описываемых формулой k * 2^n + 1, при этом, при любом значении степени n, число-результат никогда не будет простым. Такие числа, точнее, их коэффициент k, являются большой редкостью и их поиск представляет собой достаточно сложную задачу. Ученые-математики занимаются поисками чисел Серпинского с 1960-х годов, а упомянутая выше проблема Серпинского заключается в поиске такого числа, имеющего самое малое значение. Самое малое из известных на сегодняшний день чисел Серпинского равно 78 557, что доказал в 1962 году американский математик Джон Селфридж (John Selfridge).
За последние 50 лет ученые нашли еще несколько кандидатов в числа Серпинского — 10223, 21181, 22699, 24737, 55459 и 67607. Однако, для доказательства этого факта требуется перебор всех возможных степеней n и анализ полученного результата. А это, с учетом уровня развития современной вычислительной техники, непосильная задача даже для самых мощных суперкомпьютеров.
Новое открытие говорит о том, что один из списка кандидатов на числа Серпинского, число 10223, не может быть таковым вследствие того, что при значении степени 31172165 оно является простым числом. И это уменьшает количество кандидатов на звание самого малого числа Серпинского до пяти.
Расчет простого числа с более чем девятью миллионами знаков занял бы более столетия времени работы обычного персонального компьютера. Однако, на этот процесс потребовалось всего восемь дней, благодаря работе тысяч компьютеров участников проекта распределенных вычислений PrimeGrid, которые предоставляют для общего пользования вычислительные мощности своих персональных компьютеров. Расчет числа 10223 * 2^31172165 + 1 был сделан компьютером Сзаболкса Питера (Szabolcs Peter) из Венгрии, благодаря чему он считается открывателем этого числа.
И в заключении следует отметить, что простые числа не обязательно открываются учеными по порядку в силу различных причин. Самым большим из известных на сегодняшний день простых чисел является число M74207281, являющееся 49-м известным членом так называемого ряда простых чисел Мерсенна. Это число состоит из 22 миллионов знаков, и если каждый из знаков будет иметь размер в 1 миллиметр, то общая длина записи этого числа составит 22.3 километра.
Пока еще неизвестно, будет ли решение проблемы Серпинского иметь значение для любой области, кроме чистой математики. Но, безусловно, обладание значениями больших простых чисел является жизненно важным для некоторых областей, таких, как шифрование и защита информации, к примеру.